There is no possibility of a catastrophic accident in a fusion reactor resulting in major release of radioactivity to the environment or injury to non-staff, unlike modern fission reactors. The primary reason is that nuclear fusion requires precisely controlled temperature, pressure, and magnetic field parameters to generate net energy. If the reactor were damaged, these parameters would be disrupted and the heat generation in the reactor would rapidly cease. In contrast, the fission products in a fission reactor continue to generate heat through beta-decay for several hours or even days after reactor shut-down, meaning that melting of fuel rods is possible even after the reactor has been stopped due to continued accumulation of heat (Fukushima I incidents demonstrated the problems that can rise in a fission reactor due to beta decay heating even days after SCRAM, an emergency shutdown of the fission reactor).People often point, especially after reactor incidents like this or after Mr. Obama's SOTU (in which he challenged America to resume nuclear reactor construction) that nuclear reactor development languished after Chernobyl. This is true. What people don't talk about enough is the fact that nuclear fusion reactor research has been underfunded for the last 40 years. Which, honestly, is a travesty, because fusion promises orders of magnitude more energy than a fission reactor while consuming and producing harmless, non-radioactive components.
There is also no risk of a runaway reaction in a fusion reactor, since the plasma is normally burnt at optimal conditions, and any significant change will render it unable to produce excess heat. In fusion reactors the reaction process is so delicate that this level of safety is inherent; no elaborate failsafe mechanism is required. Although the plasma in a fusion power plant will have a volume of 1000 cubic meters or more, the density of the plasma is extremely low, and the total amount of fusion fuel in the vessel is very small, typically a few grams. If the fuel supply is closed, the reaction stops within seconds. In comparison, a fission reactor is typically loaded with enough fuel for one or several years, and no additional fuel is necessary to keep the reaction going.
In the magnetic approach, strong fields are developed in coils that are held in place mechanically by the reactor structure. Failure of this structure could release this tension and allow the magnet to "explode" outward. The severity of this event would be similar to any other industrial accident or an MRI machine quench/explosion, and could be effectively stopped with a containment building similar to those used in existing (fission) nuclear generators. The laser-driven inertial approach is generally lower-stress. Although failure of the reaction chamber is possible, simply stopping fuel delivery would prevent any sort of catastrophic failure.
Most reactor designs rely on the use of liquid lithium as both a coolant and a method for converting stray neutrons from the reaction into tritium, which is fed back into the reactor as fuel. Lithium is highly flammable, and in the case of a fire it is possible that the lithium stored on-site could be burned up and escape. In this case the tritium contents of the lithium would be released into the atmosphere, posing a radiation risk. However, calculations suggest that the total amount of tritium and other radioactive gases in a typical power plant would be so small, about 1 kg, that they would have diluted to legally acceptable limits by the time they blew as far as the plant's perimeter fence.
I am sorry that the nuclear accidents in Japan are happening. My heart goes out to them. People from various groups have raised a myriad of possible ways the accident could have been prevented, or could be prevented from happening again elsewhere. To this I add my two cents: there will only cease to be nuclear reactor accidents once we commercialize and switch to nuclear fusion reactors.
_
0 comments:
Post a Comment